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1. Let us consider arbitrary vibrations in a rod with nonlinear governing equation. 

The dynamic equations of the rod are: 

Q’ - mu” = 0, i?= u’, Q = Q (8, e') (1.0 
where Q is the tensile force, e the strain, U, the axial displacement, m the linear 
mass. Moreover, the prime denotes the derivative with respect to the coordinate x, and 
the dot, with respect to time. We moreover assume that the nonlinear function Q (a, e’) 
will be an odd function of its arguments. 

Let us assume that the rod has the finite length 2, where one of its ends (z = 0) is 
free, and the other (x = I) is loaded by a force p, which is a stationary random function 
of time with zero mathematical expectation. 

The formulated problem will be the simplest of a series of problems originating in a 
study of the propagation of vibrations in such structures as aircraft, rockets, etc., because 

it is known that structural damping is nonlinear. 

It is known that the formulated problem has no exact solution at present. An approxi- 
mate solution, based on utilizing the method of statistical linearization [l-3], is proposed 
below. 

In conformity with this method, the nonlinear third equation in (1.1) is replaced approx- 

imately by the linear equation Q z hle + h,e’ (1.2) 

The linearization coefficients hr and h, are selected here from the condition that the 
linear relationship (1.2) would optimally approximate the original nonlinear relation- 

ship with respect to the criterion of minimum root-mean-square error. They are expres- 
sedaspl: 1 ~0 M 

hl = ~2 
ss 

Q (e, e’) ew (e, e’) de de’, ha=& SS Q(e, e’)e’w(e, e’)dede’ (1.3) 
-cu --03 

Here (31 and o, are the mean-square values of the strain and its rate in the section 5, 
and w (8,‘ e’) is their joint probability density. Since the distribution law of e and e’ is 
unknown until the solution of the problem as a whole, it is assumed that it will be nor- 
ma1 p] 1 ( e2 8’2 

w(eTe’)=~2exp -w-22 ) (1.1) 

It is seen from (1.3) and (1.4) that the linearization coefficients depend on the as yet 
unknown mean-square values of the strain and its rate hi = hi (01, $j- 

Combining (1.2) and the first two equations of (1. l), we obtain an equation to deter- 
mine the displacement a 

x 
( 
h$+h -.- 

@u \ a% 
2 axat/ mw=O (1.5) 

It agrees with the equation of longitudinal vibrations of a rod of Kelvin-Voigt mater- 

ial. It should, however, be kept in mind that its coefficients hi and hz depend on unknown 
characteristics of the solution u1 (I) and cg (z). 

2. Let us assign the spectral representation 

543 
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to a loading p acting at the end of the rod, where lJ (0) is a random function of the type 

of white noise with intensity s (0). The function S (0) is called the spectral density of 
the loading. 

By analogy with (2. l), we seek the solution of (1.5) as an integral canonical represen- 
tation co 

u= 
s 

eiot CD (0, 2) V (0) dw (2.2) 
-CO 

Substituting (2.2) into (1.6). we obtain an equation for cf, 

$ .Cf +mow=o, ( 1 C=hl+ioh* 

where C will be called below the complex stiffness, by analogy with the linear case. 
Let us note that by virtue of (2.3), (1.5), the complex stiffness depends on aland 02, 

which will be unknown functions of z until the solution of the problem as a whole. 
The situation here is the same as in [4], where the method of harmonic linearization is 

utilized. It is impossible to construct an explicit solution of (2.3) for arbitrary C (x). 

Hence, the case is examined below when ur and 02. and in addition the complex stiffness 
C also, will be slowly varying functions of z. Then, by using the Steklov-Liouville me- 
thod [5], an effective approximate solution of (2.3) can be constructed. In conformity 
with this method, let us make the change of variables 

5 

0 = c-l” v (y), y = (m,‘C~‘dx 
s 

(2.4) 
0 

We hence obtain in place of (2.3) 

$ + (a2 - c-‘/r $ c’j’i v = 0 (2.5) 

If the stiffness varies sufficiently slowly along the length of the rod, then the second 
member in the parentneses can be neglected. Equation (2. 5) is then integrated easily, 
and the general expression is thereby found for CD. The integration constants are deter, 
mined from the boundary conditions. Integral canonical representations of the strain 
and its rate are easily obtained by means of the known integral canonical representation 

of uin(2.2) O” m 1 
EZZ 

s 
ei”‘* Y (co, 2) v(w) do, E’ zrz 

s 
iwiWt Y (co, zc) V (w) dw (2.6) 

where -cc --67 

sin (0~ (I) 
y (9 4 = [C @)]f” [C (Jf” sin oy (1) 

(2.7) 

Using (2.6), we find the mean squares of E and E 
00 co 

612 = 
s 

I’I’PS(@do, 022 = 
s 

I’+‘(?S(a)do (2.8) 

Since the unknown fi%ons ok. (5) and oa (I) enteL:he right and left sides of (2.8), 
these latter should be considered as equations to determine them. The unknown func- 
tions o1 and U, are nonlinear on the right sides in the integrals with respect to the fre- 
quency and the coordinate 2 (integration with respect to z is included in y). 

Therefore,(2.8) is a system of two nonlinear integral equations. After it has been 
solved, the interesting statistical characteristics of the vibration field is easily found by 
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formulas presented above. Hence, the main problem is to solve the system of integral 
equations (2.8). In the most general case it can be solved by numerical methods, succes- 
sive approximations say. Situations will be considered below for which an approximate 
analytical solution is possible, 

8, The greatest simplicity of the system (2. 8) is desirable in order to obtain analytical 
solutions. The expression for the square of the absolute value of Y is written in the nota- 

tion 2y (x) = A (2) - io B (x) (3.1) 

The assumption of a slow change in the complex stiffness C (2) has been introduced 
above. But it is clear from physical considerations that a slow change in o1 and 02, as 

well as in the complex stiffness which depends on them, is possible only for not too great 
damping. This means that the imaginary part in (2.3) should be small compared with 
the real part for substantial frequencies from the frequency range of the loading. The 

fact mentioned permits utilization of the following approximate formulas : 

1 C1=hl, /1(x)=2 B (x) =.2 j te)‘” 2 dx (3.3) 

0 0 

which are valid to first order accuracy in the relatively small quantities, 
The second simplification is more serious. The fact is that under slight damping the 

expression (3.2) is a rapidly varying function of the frequency with sharp peaks (these 
would be resonance peaks in the linear case). Hence, it is expedient to average 1 Y\ 2 
over a frequency band on the order of the spacing between the mentioned peaks, and 
then to integrate with respect to the frequency provided by (2. 8). Performing this ave- 
raging as in [6], we obtain , y ,12 = ,Q hTz :i;:i (‘i;’ 

(3.4) 

where the subscript on the functions, here and henceforth, indicates the value of its argu- 
ment so that hrr is the value of hr at the section I, and h,, at the section 2. 

Substituting (3.4) into (2. 8). we obtain a simplified version of the system of integral 

equations 
(3.5) 

-co -00 

It is understood that the averaging procedure described above assumes the existence 
of definite smoothness conditions in the loading spectral density. 

Particular cases admitting of comparatively simple solutions are considered below. 

4. Let the argument of the hyperbolic functions be small for the fundamental frequen- 
cies from the loading frequency range. Utilizing asymptotic formulas, we arrive at a 
system of equations from which it is seen directly that o1 and cry are constant. The equa- 
tions to determine them are: 00 co 

* 
alzh12B (1) = 

s 
s (0) 
-p- do, o~‘~~~B (1) = 5 S (w) do (/(.I) 

-CO --cc 
In the other limiting case, when the argument of the hyperbolic functions is large, 

utilization of the appropriate asymptotic formulas in (3.4) reduces the system (3. 5) to 
the following : 
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a,2 = 
’ exp0Y[B(z)--B((1)]i 

s hl:” h,;l” 
8 (0) d@, Gz2 = 

’ exp 09 [B (z) - B(L)] 

I 
--00 

$2 hJ2 
c&S do (4.2) 

--co 

The system (4.2) is of value in itself. The analysis of a semi-infinite rod x < t loaded 
by a random force at the section J = 1 reduces exactly to this system. From the physi- 
cal viewpoint, the transition to the system (4.2) corresponds to neglecting reflection of 
the vibrations from the free end of the rod. 

The first difficulty to arise in solving the system (4.2) is the evaluation of the integrals 
with respect to the frequency, Such an evaluation is possible in general form for some 

classes of loading spectral densities, For example, if 

s = D 1 0 p c?*, s> 0, P > 0, D>O (4.3) 

the situation reduces to tabulated integrals 
cm 
l 

!I p e-Pz’ & = - ; p-l’*v (\$) 
where 1‘ is the Euler Gamma function. o 

In this case the system (4.2) becomes after some simplification, 

(4.4) 

The left equality yields a direct connection between err and aaX while the differen- 
tial equation 

& [z (~~]“‘“iS)~ =_+!!!$) (4.6) 

is easily obtained from the second. 

Here, the unknown function of err and oasis on the right side by virtue of the last for- 
mula in (3.3). The boundary values oil and IS,, should be found directly from the system 
(4.2)at x= I 

%I h=$ ctl hll = up. (4.7) 

where op and oP’are the mean-square values of the loading and its rate of change, 

5, bet the rod material be linearly elastic with a power resistance law. Its governing 

equation is Q = Ice + r 1 E’ ] p sign a’ (5.1) 

where k, r, p are positive constants. 
The linearization coefficients and B’ (xl have the following expressions: 

hl = k, h, = da,“-I, dB / dx = ya,‘“-l (5.2) 

d= 

In this case (4.6) becomes 
-1-4/(~+3) 1 dc2x T 

P-1 
-qd2=p2x (5.3) 

which has the solution 
-l/h 

6:x = 622 [ 1 + tp + 3, rb $1 (I _ x) 

4P 1 ) ?v=p-l++j (5.4) 

This expression allows some general deductions on the nature of the vibration field. 
For definiteness, let us speak of a semi-infinite rod zc < 1. It follows from (5.4) that for 

h > 0 the vibration includes the whole rod, while for h < 0 it is propagated only over 
the distance 
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(5.5) 

The rest of the rod turns out to be fixed. 
For h = 0 the vibrations damp out exponentially. 
The deductions obtained are valid approximately even for a finite rod, if Only a sub- 

stantial decrease in o2 occurs along its length l . 

8, Unfortunately, the general case when the arguments of the hyperbolic functions in 
(3.4) are arbitrary cannot be investigated analytically in general form. The reason for 
this is the difficulty in integrating with respect to the frequency in (3.5). 

However, this integration can be carried out in one particular case, albeit appRX& 

mately. We speak of a narrowband high frequency loading. In this case the system (3.5) 

becomes (512 = I Y (Q, 5) I* s,op2, a,2 = IY (Q, I) I*2 Pap2 (6.1) 

where & is the mean loading frequency, and or, is its mean-square value. It is under- 
stood that the loading frequency band should be sufficiently wide so that the averaging 
with respect to the frequency carried out above would still be meaningful. 

The system (6.1) can be rewritten as follows: 

o!4 - Qo1, 012 = IY(Q, Z)I,2UP2 (6.2) 

so that we have the second equation of (6.2) in which u2 should be eliminated by utilit- 
ing the first equation, for the determination of ~1. 

The vibration field is analyzed comparatively simply on the basis of [S. 2). 
Homogeneous and strongly inhomogeneous fields can be investigated by the methods 

in Sect. 4. The intermediate case, the case of a slightly inhomogeneous field, has not 
generally been investigated successfully before. Let us start with it. It is hardly possible 
to obtain an exact solution of the integral equation (6.2) in this intermediate case. Hence, 
an approximate solution is indicated. It is known that if the nature of the solution of the 

equation can be conjectured, then application of direct methods yields satisfactory results. 

One of them, the method of collocations, is applied below. 
Let us clarify the possible nature of the solution of (6.2). Since ctr is a mean-square 

quantity, it is inevitably positive or zero. If the vibration field is homogeneous, then 
u1 = const. If it is slightly inhomogeneous, then ~1 changes somewhat along the length, 
decreasing as it recedes from the loaded end of the rod. It is hence evident that the 
dependence orX --. on e-b (*-s/U (6.3) 

can approximate the vibration field sufficiently well if only the parameters url and b. 

are selected successfully. To determine these parameters we demand that (6.2) satisfy 
(6.3) in just two points, the ends of the rods. We obtain 

oil a = 1 Y (Q, 2) I*%sp2, um2 = 1 Y (Q, 0) I,%nt (6.4) 

Since ulr is expressed by (6.3), then (6.4) is a system of algebraic or transcendental 
equations to determine urr and t. 

It is perfectly clear that the approximate solution thus constructed describes a homo- 

geneous and slightly inhomogeneous vibration field well. The approximation (6.3) trans- 

mits the details of a slightly inhomogeneous field poorly. But the method Of Sect. 4 
yields good results precisely in this case. The situation reduces then to the integral equa- 
tion u 2=u 11 

PZ h,r-‘ix hlX-% exp@ [B (z) - B (I)] (6.5) 
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Taking the logarithmic derivative of the right and left sides, we reduce this equation 
to the differential equation 

il 
& In (5,X* hrXs~~ $&2-&- dB (~1 

(6.6) 

In evaluating the derivative with respect tosor,it should be kept in mind that 02~ 
depends on or,in conformity with the first formula in (6.2). 

The first of conditions (4.7) will be the boundary condition for (6.6) because it is 

valid for any kind of spectral density of the loading. 
Therefore, the whole range of possible values of inhomogeneity in the vibration field 

is covered. 

7, let us consider an example. Let us speak of a material with the rheological equa- 

tion (5.1). Then the system (6.4) is written thus: 

It can be converted to the simpler form 

R = (I - e-4b )-“4, e2b = ch BR)pml 
I_ e-b u-1) 

if the notation b (P - 1) 

(7.1) 

(7.2) 

is introduced. 
(7.3) 

The dependences R = R (b) and B = B (b) constructed by means of (7.2) are shown 

in Figs. 1 and 2 (these are the lines marked with the number 1). 

Fig. I Fig. 2 

Furthermore, the differential equation of an inhomogeneous field (6.6) takes the form 
in this case % QPfl 

yg--"T - %l* 2 (7*4) 
which has the solution 

1$-u-l -@%jL-t(z-~) I -I/(P-1) 
%c = $1 2 (7.5) 

where art is determined from the boundary condition (4.7). 
This expression is suitable only for those z for wirich the right side remains real and 

positive, For p > 1 it is suitable for all z. If p < I it vanishes for a specific I = xI 
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and thereafter is meaningless. Hence, for < 3, we should take 01% = 0 since this solu- 

tion satisfies (7.4) and continuously adjoins the solution (7.5) for the domain z > 5,. 

To construct the solution (7.5) in Figs. 1, 2. let us first note that from boundary condi- 
tion (4.7) it follows that: R=l (7.6) 

Furthermore, we take the logarithm of the ratio between the mean-square strains at 
the point of load application (5 = E) and at the free end (I = 0) as the degree of inho- 
mogeneity b Such a definition of the index of inhomogeneity agrees with the approxi- 

mation (6.3). In conformity with (7.5), we have in this case 

Utilizing the notation (7.3), we write this relationship thus : 

b (P-I) --II 
l'(p-1) 

(7.7) 

Presented in Figs. 1 and 2 are the dependences R = R (b) and B = B (b) constructed 
by means of (7.6) and (7. 8), for two characteristic p (these are the lineo marked with 
the number 2). It is seen from (7. 8) that for p < 1 the almost constant value 

2 
B= .i--y ( 1 

l/&-l) 

corresponds to large b . 
(7.9) 

But B is proportional to the loading op. What will it be for a loading less than that 

which corresponds to the limit (7.9) ? By virtue of (7.3),(7.6).(7.9), this will be the 
value for which the ineaualitv . , 

is satisfied. 
But it then follows from (7.5) that the vibration does not reach the free end, i. e. we 

have o10 = O.Therefore. an infinite index of inhomogeneity corresponds to this caie. 

As has already been mentioned above, in the case of a slightly inhomogeneous vibra- 

tion field ( b < 1 , say), it is necessary to use line 1, while in the case of strongly inho- 

mogeneous vibration ( b > 1 , say), line 2. It should be noted that lines 1 and 2 go over 
into each other sufficiently well. Therefore, we have provided for the whole range of 
possible values of b. 

Finally, let us note that the line p = 2 will be characteristic for the family of lines 

p > 1, while the line p = 0 is characteristic for the family p < 1. Taking account of 
this fact the following deductions can be made. 

Firstly, a single value of b , and therefore, a single value of the statistical character- 
istics of the vibration field, corresponds to each value ‘sp . 

Secondly, for p > 1 an increase in a,results in a growth of the index of inhomogen- 

eity of the vibration field, while for p < 1 it diminishes. 
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Stability of the equilibrium position of a nonautonomous Hamiltonian system with two 
degrees of freedom is investigatied for the resonant case. The conditions of instability 

as well as those of formal stability are obtained. 

1, We assume that the coordinaLe origin qi = pi -= 0 corresponds to the position of 
equilibrium of the canonical system of differential equations 

aH ‘Vi dPi aH 
dt - i?pi dt --q- (i = 1,2) Wl 

where H is a Hamiltonian function Bn-periodic in t and analytic in the vicinity of the 
point 4i = Pi = 0. 

Let the linearized system be stable and all its multipliers be distinct. We assume that 

the Hamiltonian inf 1-l) is transformed into 

H = l/z LI (q2 + ~2) + l/z b (~‘2 + pa’) + ,?j $,v2vJv, (t) Q;’ Q2”* p,“’ Pz” (1.2) 
v=3 

by means of a real linear 2nperiodic canonical transformation [l]. In (1.2) * ihr and 
+ ih, are the characteristic indices of the linearized system and vi are nonnegative 

integers v = VI + vz + vs + v4, ~YIYpY3Y( u + 2n)= ~,,,2”J”, (t) 

We also assume that the condition 

& + k,& + 0 (mod 1) (1.3) 

holds for the integers kl and k, satisfying the equalities I kl 1 + 1 k, [ = 3 or 1 kl ) i- 

+ Ik, ) = 4. Then there exists [Z] an analytic canonical transformation 2n-periodic in 

t , reducing the Hamiltonian (1.2) to the form 

H = &rr + X,r, + L,,& + JIII~~I~~ + &,~‘a” + O(lq 15) (1.4) 

(1 4 I = V/Ql’ + Qz’ + PI2 + ?2, 2ri = Pi’ + Pi’) 

Coefficients lviyIvJv, in (1.4) are independent of t. Let the quadratic form 

1 2020r12 + lllllrlrz + b.o,~,2 
be sign definite in the quadrant t-1 > 0, r2 > 0. Then the position of equilibrium is 


